Tetrahedron Letters 49 (2008) 5855-5857

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A simple entry to novel spiro dihydroquinoline-oxindoles using Povarov reaction between 3-*N*-aryliminoisatins and isoeugenol

Vladimir V. Kouznetsov*, Josué S. Bello Forero, Diego F. Amado Torres

Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Colombia

ARTICLE INFO

Article history: Received 3 June 2008 Revised 16 July 2008 Accepted 17 July 2008 Available online 23 July 2008

Keywords: Imino-Diels-Alder cycloaddition Dihydrospiro[indoline-3,2'-quinoline]-2ones Isoeugenol Isatin

Tetrahydroguinoline and spiro-guinoline derivatives¹ occupy a special place in organic and medicinal chemistry, because these compounds are well-known as melanocortin receptors (MC4) agonists,² antipsychotics,³ acetylcholinesterase inhibitors (an important target for the treatment of Alzheimer's disease),⁴ ligands for estrogen receptors,⁵ and protein farnesyltransferase (PTF) inhibitors, important enzyme for the survival of the pathogenic protozoa Plasmodium falciparum.⁶ The C-3-spiro-oxindol framework system is the core structure of many natural alkaloids (horsfiline 1, spirotryprostatin A **2**, pretropodine **3**, etc.)⁷ and reported pharmacological agents **4** or **5**^{8,9} (Fig. 1), which proves that this spiro-bridge with a heterocyclic ring, highly enhances biological activity. With the view that the small rigid molecules containing both the tetrahydroquinoline and oxindole framework connected through a spiroatom would be of high interest in pharmacological studies, and in continuation of our research on the synthesis of heterocyclic molecules using acid-catalyzed cycloaddition reactions,¹⁰ we herein report a facile reaction of trans-isoeugenol with iminoisatin derivatives to provide a novel protocol for the preparation of dihydrospiro[indoline-3,2'-quinolin]-2-one derivatives 6 via BF₃·OEt₂catalyzed imino Diels-Alder reaction (Povarov reaction), which is a popular, atom-economical, C-C and C-N bonds forming reaction to construct N-containing six-membered heterocyclic compounds, including tetrahydroquinolines.^{11,12}

However, to the best of our knowledge, there have not been reports about the straightforward synthesis of dihydrospiro[indo-

* Corresponding author. Tel./fax: +57 76 349069.

ABSTRACT

An easy, fast, and cheap way for the synthesis of the new 4'-(4-hydroxy-3-methoxyphenyl)-3'-methyl-3',4'-dihydro-1'H-spiro[indoline-3,2'-quinolin]-2-ones using BF_3 ·OEt₂-promoted imino Diels-Alder cycloaddition between ketimine-isatin derivatives and *trans*-isoeugenol.

© 2008 Elsevier Ltd. All rights reserved.

line-3,2'-quinolin]-2-one derivatives **6**,¹³ which are complex and interesting rigid molecules in pharmacological studies. Moreover, this is the first utilization of the Povarov reaction of iminoisatins as azadienes with styrene derivatives as a dienophile.

Bearing these results in mind, we started our study toward dihydrospiro[indoline-3,2'-quinolin]-2-one derivatives preparation from cheap and commercially available isatin **7**. Ketimine precursors **9a–h** were easily obtained using a common procedure for imine formation, condensing isatin with diverse substituted anilines **8** in the presence of AcOH in refluxing methanol,^{14,15} or in PEG-400 as a green reaction medium.¹⁶ Further cycloadditions [4+2] through imino Diels–Alder reaction of the ketimines **9a–h** with the *trans*-isoeugenol **10** lead to the novel spiro-cycloadducts **6a–h** as stable solid substances after chromatographic purification in moderate to good yields (Scheme 1, Table 1).¹⁷ This reaction is promoted by the Lewis acid BF₃·OEt₂ in anhydrous dichloromethane as solvent, at room temperature from 1 to 3 h.

The ¹H NMR and ¹³C NMR analysis of the dihydrospiro[indoline-3,2'-quinolin]-2-ones indicated that the methyl substituent in position C-3' was *trans* to the aryl ring at C-4' of the major diastereomers **6**, although three stereocentres are presented in molecules **6**; its *trans*-(3'e,4'e)-form is shown in Scheme 1. This was corroborated by the protons H-3' and H-4' coupling constants ($J_{3'a,4'a} = 11.2-11.9$ Hz), affirmation enough to indicate the axial-axial (*trans*) relationship to the case. The latter form is maintained to all the homologue series. Two broad singlets appeared at 10.55– 10.68 ppm to the NH_{Indol} and at 5.30–6.58 ppm to the NH_{THQ} protons, confirming the amide and amine functions, respectively. The new quaternary center or the generated spirocyclic carbon atom

E-mail address: kouznet@uis.edu.co (V. V. Kouznetsov).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.07.096

Figure 1. Heterocyclic spiro indolic skeleton of alkaloids 1-3 and synthetic spiro compounds 4-6.

Scheme 1. Synthesis of the 4'-(4-hydroxy-3-methoxyphenyl)-3'-methyl-3',4'-dihydro-1'H-spiro[indoline-3,2'-quinolin]-2-ones from commercial isatin, anilines and transisoeugenol.

Table 1
Physical data of dihydrospiro[indoline-3,2'-quinolin]-2-one derivatives 6a-h

Compounds 6	R ₁	R ₂	Mp (°C)	Yield (%)	Molecular formula	Log P ^a
a	Н	Н	280-282	40	$C_{24}H_{22}N_2O_3$	3.22 ± 0.59
b	Н	CH_3	252-253	40	$C_{25}H_{24}N_2O_3$	3.68 ± 0.59
c	Н	OCH_3	252-253	37	$C_{25}H_{24}N_2O_4$	3.43 ± 0.70
d	CH_3	Н	272-273	60	$C_{25}H_{24}N_2O_3$	3.68 ± 0.59
e	Et	Н	240-241	64	$C_{26}H_{26}N_2O_3$	4.21 ± 0.59
f	Н	Et	263-264	58	$C_{26}H_{26}N_2O_3$	4.21 ± 0.59
g	Cl	Н	270-271	55	$C_{24}H_{21}CIN_2O_3$	4.00 ± 0.69
h	Br	Н	264–265	35	$C_{24}H_{21}BrN_2O_3$	4.38 ± 0.66

^a Theoretical values log *P* were calculated using commercially available ACD LAB 6.0 program.

C-2' was assigned through ¹³C NMR and DEPT-135 experiments at 64.1–65.4 ppm.¹⁸ These data were also confirmed by homonuclear and inverse detected 2D-NMR.¹⁹ The HMBC correlations of compound **6d**, helpful in the assignment of the chemical shifts of molecules **6**, are shown in Figure 2.

From the inverse detected 2D-NMR data it can be seen that the major diastereomers **6** resulting from the imino Diels–Alder cycloaddition reaction orient exclusively the 3'-Me group *cis* to the oxindole carbonyl in all the cases.^{20,21}

The synthesized molecules partition coefficient $\log P$ values (Table 1) between 2.99 and 4.38 are in agreement with the estimated values (less than 5.0, up to 2.0) for a good lipophilicity and solubility, which is a useful parameter in drug discovery and development, a good predictor of the molecules transport properties across cell membranes, and an indicator of protein binding characteristics, according to the spiro-compounds activities discussed above.²²

Figure 2. HMBC correlations of the spiro molecule 6d.

In conclusion, we described in this letter the two-step synthesis of an interesting rigid heterosystem with a strategy that allows the development of a new series of novel -(4-hydroxy-3-methoxyphenyl)-3'-methyl-3',4'-dihydro-1'*H*-spiro[indoline-3,2'-quinolin]-2ones in a fast, safe, and cheap way through catalyzed cycloadditions between ketimines from isatin and aromatic anilines, and *trans*-isoeugenol. The coupling of two biologically relevant systems as they are the indole ring along with the tetrahydroquinoline system spirojoined allows excellent candidates to bioactivity trials.

Acknowledgment

This work was supported by the Instituto Colombiano para el Desarrollo de La Ciencia y La Tecnología 'Francisco José de Caldas' (COLCIENCIAS-CENIVAM, Grant No. 432-2004).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2008.07.096.

References and notes

- (a) Katritzky, A. R.; Rachwal, S.; Rachwal, B. *Tetrahedron* **1996**, *52*, 15031– 15070; (b) Kouznetsov, V.; Palma, A.; Ewert, C.; Varlamov, A. J. Heterocycl. Chem. **1998**, *35*, 761–785; (c) Kouznetsov, V. V. J. Heterocycl. Chem. **2005**, *42*, 39–59.
- Fisher, M. J.; Backer, R. T.; Husain, S.; Hsiung, H. M.; Mullaney, J. T.; O'Brian, T. P.; Ornstein, P. L.; Rothhaar, R. R.; Zgombick, J. M.; Briner, K. *Bioorg. Med. Chem. Lett.* 2005, 15, 4459–4462.
- Singer, J. M.; Barr, B. M.; Coughenour, L. L.; Gregory, T. F.; Walters, M. A. Bioorg. Med. Chem. Lett. 2005, 15, 4560–4563.
- Guo, T.; Gu, H.; Hobbs, D. W.; Rokosz, L. L.; Stauffer, T. M.; Jacob, B.; Clader, J. W. Bioorg. Med. Chem. Lett. 2007, 17, 3010–3013.
- Chen, W.; Lin, Z.; Ning, M.; Yang, C.; Yan, X.; Xie, Y.; Shen, X.; Wang, M.-W. Bioorg. Med. Chem. 2007, 15, 5828–5836.
- Eastman, R. T.; White, J.; Hucke, O.; Yokoyama, K.; Verlinde, C. L. M. J.; Hast, M. A.; Beese, L. S.; Gelb, M. H.; Rathod, P. K.; Van Voorhis, W. C. Mol. Biochem. Parasitol. 2007, 152, 66–71.
- Horsfiline: (a) Jossang, A.; Jossang, P.; Hadi, H. A.; Sévent, T.; Bodo, B. J. Org. *Chem.* **1991**, *56*, 6527–6530. Spirotryprostatin A: (b) Cui, C.-B.; Kakeya, H.; Okada, G.; Osada, H. J. Antibiot. **1996**, *49*, 527–533. Pteropodine: (c) Kang, T.-H.; Matsumoto, K.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. Eur. J. *Pharmacol.* **2002**, *444*, 39–45.
- Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. J. Am. Chem. Soc. 2005, 127, 10130–10131.
- Dandia, A.; Singh, R.; Khaturia, S.; Mérienne, C.; Morgant, G.; Loupy, A. Bioorg. Med. Chem. 2006, 14, 2409–2417.
- (a) Kouznetsov, V. V.; Bohórquez Romero, A. R.; Stashenko, E. E. *Tetrahedron Lett.* 2007, 48, 8855–8860; (b) Kouznetsov, V. V.; Merchan Arenas, D. R.; Bohórquez Romero, A. R. *Tetrahedron Lett.* 2008, 49, 3097–3100; (c) Kouznetsov, V. V.; Mora Cruz, U.; Zubkov, F. I.; Nikitina, E. V. Synthesis 2007, 375–384; (d) Kouznetsov, V. V.; Bohórquez Romero, A. R.; Astudillo Saavedra, L.; Fierro Medina, R. *Mol. Divers.* 2006, 10, 29–37.
- Fringuelli, F.; Taticchi, A. The Diels-Alder Reaction Selected Practical Methods; John Wiley & Sons, Ltd: Chichester, 2002; 330 p.
- 12. Cycloaddition Reactions in Organic Synthesis; Kobayashi, S., Jørgensen, K. A., Eds.; Wiley-VCH: Weinheim, 2002; pp 187–209.
- Unique synthesis of spiro[indoline-3,2'-(1',2',3',4'-tetrahydroquinoline)]-2,4'diones derivatives has been reported, see: Al-Thebeiti, M. S. *Heterocycles* 1998, 48, 145–150.
- 14. General experimental procedure for the synthesis of the ketimines: Isatin 7 (6.8 mmol) was dissolved in anhydrous methanol (50 mL) and the proper arylamines 8a-h were added (8.16 mmol) and then, the acid catalyst, AcOH (0.1-7.4 mL). The reaction mixture was refluxed, stirring constantly, for 3-8 h monitoring through TLC. After the reaction mixture reached room temperature, the precipitated solid was filtered and washed with petroleum ether, and then vacuum dried to get the ketimines 9a-h in good to excellent yields (50-86%).
- 15. Selected spectral data of ketimines **9**: Ketimine **9b**, Ref. en. 43 (2:1 petroleum ether/ethyl acetate); mp 184–185 °C; IR (KBr): 3251 ν_(NH), 1747 ν_(NC=0), 1666 ν_(NH), 1612 ν_(C=N), 1461 ν_(C=C), 1338 ν_(C-N) cm⁻¹; ¹H NMR (400 MHz, CDCl₃, Me₄Si): δ 9.72 (1H, br. s, H–N), 7.32–7.28 (2H, m, 6-H_{indol}, 5'-H_Ar), 7.23 (1H, d, *J* = 7.5 Hz, 6'-H_Ar), 7.16 (1H, dd, *J* = 7.8, 7.3 Hz, 5-H_{indol}), 6.95 (1H, d, *J* = 7.8 Hz, 4'-H_{indol}), 6.85 (1H, d, *J* = 7.6 Hz, 3'-H_Ar), 6.74 (1H, ddd), *J* = 7.6, 8.3 Hz, 4'-H_Ar), 6.5 (1H, d, *J* = 7.7 Hz, 7-H_{indol}), 2.16 (3H, s, Me) ppm. ¹³C NMR (100 MHz, CDCl₃, Me₄Si): δ 165.4, 154.7, 149.1, 145.4, 134.3 (+), 130.9, 126.7 (+), 126.2 (+), 126.1 (+), 125.3 (+), 123 (+), 116.6 (+), 111.8 (+), 17.7 (+) ppm. GC–MS: R₁: 23.54 min; *m/z* (%): 236 (M⁺, 51), 208 (100), 180 (16), 118 (6), 91 (19), 65 (26). Anal. calcd for C₁₅H₁₂N₂O: C, 76.25; H, 5.12; N, 11.86. Found: C, 76.49; H, 5.03; N, 11.67. Ketimine **9c**, *R*_f = 0.33 (2:1 petroleum ether/ethyl acetate); mp 177–179 °C; IR (KBr): 3170 ν_(NH), 1735 ν_(N⊂=O), 1654 ν_(NH), 1612 ν_(C=N), 1461 ν_(C=C), 1334 ν_(C=N) cm⁻¹; ¹H NMR (400 MHz, CDCl₃, Me₄Si): δ 3.78 (1H, br. s, H–N), 7.29 (1H, dd, *J* = 7.8 Hz, 3'-H_Ar), 7.0–6.9 (3H, m, 4-H_{indol}, 4' and 5'-H_Ar), 6.76–6.75 (2H, m, 7-H_{indol} and 4'-H_Ar), 3.76 (3H, s, OMe) ppm. ¹³C NMR (100 MHz, CDCl₃, Me₄Si): δ 165.3, 155.3, 148.1, 145.2, 134.2 (+), 126.5 (+), 125.8 (+), 122.7 (+), 121.2 (+), 121.0 (+), 119.3 (+), 117.1 (+), 111.8 (+), 111.6 (+), 55.6 (+) ppm. GC–MS: R_t: 24.67 min; *m/z* (%): 252 (M⁺, 67), 237 (9), 224 (36), 195 (100).

(36), 92 (17), 77 (24). Anal. calcd for $C_{15}H_{12}N_2O_2$: C, 71.42; H, 4.79; N, 11.10. Found: C, 71.23; H, 4.95; N, 11.05.

- 16. General experimental procedure for the synthesis of the ketimine **9b** in PEG 400: In a round-bottom flask, the isatin **7** (2.04 mmol) was dissolved in PEG 400 (5 mL) and the arylamine 8 b was added (2.44 mmol) stirring and heating at 80 °C for 3 h. The product formation is monitored by TLC comparing to the standard protocol of ketimine.
- 17. General experimental procedure for the synthesis of the dihydrospiro[indoline-3,2'quinolin]-2-ones: In a Schlenck flask, the ketimines **9a-h** (1.8 mmol) were dissolved in anhydrous dichloromethane with inter nitrogen atmosphere. The BF₃·OEt₂ (1.98 mmol) was added stirring constantly. Fifteen minutes later, the trans-isoeugenol (2.7 mmol) was added. The reaction mixture was monitored through TLC. The reaction mass was then treated with 20 mL of NaHCO₃ solution and extracted with ethyl acetate (3 × 20 mL). The organic layer was dried on anhydrous Na₂SO₄ and then concentrated by vacuum. The pure compounds **6a-h** were obtained after recrystallization from heptanes/AcOEt (1/1) or silica gel column chromatography with petroleum ether and ethyl acetate as eluents (Table 1). It is important to note that trying to heat the reaction over the room temperature (25 °C) resulted in the ketimine rupture and the complete failure of the synthesis.
- Selected spectral data for some compounds 6: 4'-(4-Hydroxy-3-methoxyphenyl)-18 3'-methyl-3',4'-dihydro-1'H-spiro[indoline-3,2'-quinolin]-2-one (6a): white yellow solid, mp 280-282 °C; IR (KBr): 3455 v(NH-indol), 3336 v(NH-THQ), 1712 v(NC=O), 1600 ν_(NH), 1265 ν_(ArC-O) cm⁻¹; ¹H NMR (400 MHz, CDCl₃, Me₄Si): δ 7.80 (1H, s, 4"-OH_{Ar}), 7.27 (1H, td, J = 7.9, 0.9 Hz, 5'-H_{THO}), 7.14 (1H, d, J = 7.4 Hz, 7-H_{Indol}), 7.03-6.99 (2H, m, 4-H_{Indol} and 7'-H_{THQ}), 6.91 (1H, d, J = 7.7 Hz, 6-H_{Indol}), 6.80 (1H, d, J = 8.0 Hz, 5-H_{Indol}), 6.75 (1H, dd, J = 8.0, 1.7 Hz, 8'-H_{THO}), 6.70–6.63 (3H, m, 6'-H_{THO}, 2"-H_{Ar} and 5"-H_{Ar}), 6.59 (1H, d, J = 8.0 Hz, 6"-H_{Ar}), 5.54 (1H, s, NH_{THQ}), 3.86 (1H, d, J = 11.1 Hz, 4'-H), 3.80 (3H, s, 3"-OMe), 2.64 (1H, dq, J = 11.8, 6.6 Hz, 3'-H), 0.53 (3H, d, J = 6.6 Hz, 3'-Me) ppm. ¹³C NMR (100 MHz, CDCl₃, Me₄Si): δ 178.6 (C(O)N), 146.9, 144.5, 142.3, 139.9, 135.2, 131.5, 130.1 (+), 129.1 (+), 127.3 (+), 125.0, 124.8 (+), 123.4 (+), 123.3 (+), 118.8 (+), 115.5 (+), 113.8 (+), 111.0 (+), 109.9 (+), 65.4 (spiro), 56.0 (+), 47.3 (+), 40.8 (+), 13.3 (+) ppm. GC–MS: Rt: 53.34 min; m/z (%): 386 (M⁺, 13), 343 (4), 254 (7), 235 (100), 115 (5). Anal. calcd for C24H22N2O3: C, 74.59; H, 5.74; N, 7.25. Found: C, 74.78; H, 5.89; N, 7.16. 4'-(4-Hydroxy-3-methoxyphenyl)-3'6'-dimethyl-3',4'dihydro-1'H-spiro[indoline-3,2'-quinolin]-2-one (6b): white yellow solid, mp $\begin{array}{c} \text{Gamma for the spectrum of the spectr$ NH_{Indol}), 8.79 (1H, s, 4"-OH_{Ar}), 7.19 (1H, td, J = 7.6, 1.1 Hz, 6-H_{Indol}), 6.96 (1H, t, J = 7.0 Hz, 4-H_{indol}), 6.90 (1H, t, J = 7.4 Hz, 5-H_{indol}), 6.85 (1H, d, J = 7.7 Hz, 5"- $\begin{array}{l} J = 7.0 \text{ Hz}, 4 + H_{\text{Indol}}, 0.59 \ (1\text{H}, \text{ L}, \text{ J} = 7.4 \text{ Hz}, 3 - H_{\text{Indol}}), 0.83 \ (1\text{H}, \text{ d}, \text{ J} = 7.7 \text{ Hz}, 3 - H_{\text{Ar}}), 6.79 \ (1\text{H}, \text{ d}, \text{ J} = 6.3 \text{ Hz}, 5' - \text{H}_{\text{TH}}), 6.72 \ (1\text{H}, \text{ d}, \text{ J} = 8.0 \text{ Hz}, 6'' - \text{H}_{\text{Ar}}), 6.66 \ (1\text{H}, \text{ s}, 2'' - \text{Ha}_{\text{Ar}}), 6.50 \ (1\text{H}, \text{ d}, \text{ J} = 8.0 \text{ Hz}, 6'' - 0.634 \ (2\text{H}, \text{ m}, 6' - \text{H}_{\text{TH}}), 6.50 \ (1\text{H}, \text{ d}, \text{ J} = 8.0 \text{ Hz}, 6'' - 0.634 \ (2\text{H}, \text{ m}, 6' - \text{H}_{\text{TH}}), 3.80 \ (1\text{H}, \text{ d}, \text{ J} = 12.0 \text{ Hz}, 4' - \text{H}), 3.68 \ (3\text{H}, \text{ s}, 3'' - \text{OMe}), 2.32 \ (1\text{H}, \text{ d}, \text{ J} = 12.0, 6.6 \text{ Hz}, 3' - \text{H}), 2.01 \ (3\text{H}, \text{ s}, 8' - \text{Me}), 0.31 \ (3\text{H}, \text{ d}, \text{ J} = 6.6 \text{ Hz}, 3' - \text{Me}), 9 \text{ pm}. \ ^{13}\text{C} \text{ NMR} \ (100 \text{ MHz}, \text{DMSO-} d_6, \text{Me}_4 \text{Si}); \delta \ 178.1 \ (C(0)\text{N}), 147.5, 144.9, \end{array}$ 141.7, 141.4, 134.6, 132.4, 128.2 (+), 128.0 (+), 127.1 (+), 123.7 (+), 123.5, 121.7 (+), 121.6 (+), 121.0, 115.8 (+), 115.4 (+), 112.9 (+), 109.2 (+), 64.2 (spiro), 55.5 (+), 46.4 (+), 39.9 (+), 17.6 (+), 13.1 (+) ppm. Anal. calcd for $C_{25}H_{24}N_2O_3$: C, 74.98; H, 6.04; N, 7.00. Found: C, 74.74; H, 6.23; N, 7.13.
- 2D-NMR data of 1'H-spiro[indoline-3,2'-quinolin]-2-one **6d:** COSY correlations: 0.32 (3'-Me)]2.33; 2.02 (6'-Me)/6.32; 2.33 (3'-H)]0.32[3.76; 3.76 (4'-H)/ 2.33/6.32; 6.32 (5'-H)]2.02[3.76; 6.86 (5-H)]7.20; 6.90 (6-H)/6.86/7.20; 6.96 (4-H)/6.86; 7.20 (7-H)/6.86/6.90. HMQC correlations: 0.32 (3'-Me)/13.2; 2.02 (6'-Me)]20.2; 2.33 (3'-H)]33.8; 3.70 (3''-OMe)[55.6; 3.76 (4'-H)/46.5; 6.32 (5'-H)/129.4; 6.45 (8'-H)/114.2; 6.56 (6''-H)/121.4; 6.86 (5-H)/109.3; 6.90 (6-H)/121.8; 6.96 (4-H)/123.8; 7.20(7-H)/128.3. HMBC correlations: 0.32(3'-Me)/38.8/46.5; 2.02 (6'-Me)/124.6/128.3; 2.33 (3'-H)/13.1/33.8/46.5/64.1/ 132.1/177.7; 3.70 (3''-OMe)/147.4; 3.76 (4'-H)/ 13.1/33.8/46.5/64.1/113.0/ 129.4/134.6; 6.25 (NH_{THQ})/ 33.8/64.1/114.2/177.7; 6.32 (5'-H)/20.2/46.5/ 113.0/144.9; 6.86 (5-H)/132.1; 6.90 (6-H)/109.3/132.1; 6.96 (4-H)/64.1/ 128.3/141.5; 7.20 (7-H)/109.3/123.8/141.5; 10.50 (NH_{Indol})/64.1/132.1/141.5/ 177.7
- 20. The configuration of the oxindole moiety was assigned with aid of the NOE-experiments (the irradiation of protons 3'-H_a and 4-H_{Indol} was carried out). The similar case of the stereochemistry at the quaternary spiro and adjacent alkyl centers of spiro[pyrroline-3,3'-oxindoles] has been reported, see: Miyake, F. Y.; Yakushijin, K.; Horne, D. A. Org. Lett. **2004**, 6, 711-713.
- See, recent works on complex isatin-3-spiranes: (a) Sridhar, G.; Gunasundari, T.; Raghunathan, R. *Tetrahedron Lett.* **2007**, *48*, 319–322; (b) Kumar, R. S.; Perumal, S. *Tetrahedron Lett.* **2007**, *48*, 7164–7168; (c) Kumar, R. S.; Perumal, S. *Tetrahedron* **2007**, *63*, 12220–12231.
- Their antifungal and cytotoxic properties are under way. These results will be published soon elsewhere.